Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(7)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35884861

RESUMO

Traditionally histology is the gold standard for the validation of imaging experiments. Matching imaging slices and histological sections and the precise outlining of corresponding tissue structures are difficult. Challenges are based on differences in imaging and histological slice thickness as well as tissue shrinkage and alterations after processing. Here we describe step-by-step instructions that might be used as a universal pathway to overlay MRI and histological images and for a correlation of measurements between imaging modalities. The free available (Fiji is just) ImageJ software tools were used for regions of interest transformation (ROIT) and alignment using a rat brain MRI as an example. The developed ROIT procedure was compared to a manual delineation of rat brain structures. The ROIT plugin was developed for ImageJ to enable an automatization of the image processing and structural analysis of the rodent brain.

2.
J Anim Physiol Anim Nutr (Berl) ; 105(5): 984-988, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33655640

RESUMO

This study aimed to assess the sex differences in the feeding behaviour of non-obese diabetic severe combined immunodeficient (NOD SCID) mice in a pharmacological model of type 1 diabetes mellitus (T1Dm). In our study, we chose NOD SCID mice of both sexes and assessed their feeding behaviour, body weight, body fat and water content under identical experimental conditions and diets. After 1 month of diabetes mellitus in mice in the experimental group, males and females did not show any increase in body weight, and they weighed significantly less than the control group. However, compared with the control group, in females with a background of T1Dm, there was a significant decrease in body fat. The amount of water consumed in the experimental groups was higher than that in the control groups. The amount of food consumed by males increased when they increased their water consumption, whereas food consumption in females decreased significantly with an increase in water consumption. Thus, we discovered sex differences in the feeding behaviour, body weight and body fat and water content in the pharmacological model of T1Dm after 1 month in NOD SCID mice.


Assuntos
Diabetes Mellitus Tipo 1 , Doenças dos Roedores , Animais , Diabetes Mellitus Tipo 1/veterinária , Comportamento Alimentar , Feminino , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Caracteres Sexuais
3.
Biomedicines ; 9(1)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451058

RESUMO

Multifunctional gold nanoparticles (AuNPs) may serve as a scaffold to integrate diagnostic and therapeutic functions into one theranostic system, thereby simultaneously facilitating diagnosis and therapy and monitoring therapeutic responses. Herein, albumin-AuNP theranostic agents have been obtained by conjugation of an anticancer nucleotide trifluorothymidine (TFT) or a boron-neutron capture therapy drug undecahydro-closo-dodecaborate (B12H12) to bimodal human serum albumin (HSA) followed by reacting of the albumin conjugates with AuNPs. In vitro studies have revealed a stronger cytotoxicity by the AuNPs decorated with the TFT-tagged bimodal HSA than by the boronated albumin conjugates. Despite long circulation time, lack of the significant accumulation in the tumor was observed for the AuNP theranostic conjugates. Our unique labelling strategy allows for monitoring of spatial distribution of the AuNPs theranostic in vivo in real time with high sensitivity, thus reducing the number of animals required for testing and optimizing new nanosystems as chemotherapeutic agents and boron-neutron capture therapy drug candidates.

4.
Int J Mol Sci ; 21(23)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255702

RESUMO

(1) Background: Neurogenesis is considered to be a potential brain repair mechanism and is enhanced in stroke. It is difficult to reconstruct the neurogenesis process only from the histological sections taken from different animals at different stages of brain damage and restoration. Study of neurogenesis would greatly benefit from development of tissue-specific visualization probes. (2) Purpose: The study aimed to explore if overexpression of ferritin, a nontoxic iron-binding protein, under a doublecortin promoter can be used for non-invasive visualization of neurogenesis using magnetic resonance imaging (MRI). (3) Methods: Ferritin heavy chain (FerrH) was expressed in the adeno-associated viral backbone (AAV) under the doublecortin promoter (pDCX), specific for young neurons, in the viral construct AAV-pDCX-FerrH. Expression of the enhanced green fluorescent protein (eGFP) was used as an expression control (AAV-pDCX-eGFP). The viral vectors or phosphate-buffered saline (PBS) were injected intracerebrally into 18 adult male Sprague-Dawley rats. Three days before injection, rats underwent transient middle-cerebral-artery occlusion or sham operation. Animals were subjected to In vivo MRI study before surgery and on days 7, 14, 21, and 28 days after injection using a Bruker BioSpec 11.7 T scanner. Brain sections obtained on day 28 after injection were immunostained for ferritin, young (DCX) and mature (NeuN) neurons, and activated microglia/macrophages (CD68). Additionally, RT-PCR was performed to confirm ferritin expression. (4) Results: T2* images in post-ischemic brains of animals injected with AAV-pDCX-FerrH showed two distinct zones of MRI signal hypointensity in the ipsilesioned hemisphere starting from 14 days after viral injection-in the ischemic lesion and near the lateral ventricle and subventricular zone (SVZ). In sham-operated animals, only one zone of hypointensity near the lateral ventricle and SVZ was revealed. Immunochemistry showed that ferritin-expressing cells in ischemic lesions were macrophages (88.1%), while ferritin-expressing cells near the lateral ventricle in animals both after ischemia and sham operation were mostly mature (55.7% and 61.8%, respectively) and young (30.6% and 7.1%, respectively) neurons. RT-PCR confirmed upregulated expression of ferritin in the caudoputamen and corpus callosum. Surprisingly, in animals injected with AAV-pDCX-eGFP we similarly observed two zones of hypointensity on T2* images. Cellular studies also showed the presence of mature (81.5%) and young neurons (6.1%) near the lateral ventricle in both postischemic and sham-operated animals, while macrophages in ischemic lesions were ferritin-positive (98.2%). (5) Conclusion: Ferritin overexpression induced by injection of AAV-pDCX-FerrH was detected by MRI using T2*-weighted images, which was confirmed by immunochemistry showing ferritin in young and mature neurons. Expression of eGFP also caused a comparable reduced MR signal intensity in T2*-weighted images. Additional studies are needed to investigate the potential and tissue-specific features of the use of eGFP and ferritin expression in MRI studies.


Assuntos
Ferritinas/genética , Neurogênese/genética , Neurônios/metabolismo , Acidente Vascular Cerebral/genética , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Proteína Duplacortina , Vetores Genéticos/farmacologia , Humanos , Infarto da Artéria Cerebral Média , Ventrículos Laterais/diagnóstico por imagem , Ventrículos Laterais/metabolismo , Ventrículos Laterais/patologia , Imageamento por Ressonância Magnética , Masculino , Microglia/metabolismo , Microglia/patologia , Proteínas Associadas aos Microtúbulos/genética , Neurônios/patologia , Ratos , Ratos Sprague-Dawley , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/patologia , Acidente Vascular Cerebral/terapia
5.
Bioorg Med Chem Lett ; 28(3): 260-264, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29305188

RESUMO

Human serum albumin is playing an increasing role as a drug carrier in clinical settings. Biotin molecules are often used as suitable tags in targeted anti-tumor drug delivery systems. We report on the synthesis and properties of a new multimodal theranostic conjugate based on an anti-cancer fluorinated nucleotide conjugated with a biotinylated dual-labeled albumin. Interestingly, in vitro and in vivo study revealed stronger anti-tumor activity of the non-tagged theranostic conjugate than that of the biotin-tagged conjugate, which can be explained by decreased binding of the biotin-tagged conjugate to cellular receptors. Our study sheds light on the importance of site-specific albumin modification for the design of albumin-based drugs with desirable pharmaceutical properties.


Assuntos
Antineoplásicos/farmacologia , Biotina/química , Nucleotídeos/farmacologia , Albumina Sérica Humana/química , Nanomedicina Teranóstica , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Camundongos , Camundongos SCID , Estrutura Molecular , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Nucleotídeos/síntese química , Nucleotídeos/química , Relação Estrutura-Atividade
6.
J Cereb Blood Flow Metab ; 38(5): 919-931, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29372644

RESUMO

A recent MRI method, fast macromolecular proton fraction (MPF) mapping, was used to quantify demyelination in the transient middle cerebral artery occlusion (MCAO) rat stroke model. MPF and other quantitative MRI parameters (T1, T2, proton density, and apparent diffusion coefficient) were compared with histological and immunohistochemical markers of demyelination (Luxol Fast Blue stain, (LFB)), neuronal loss (NeuN immunofluorescence), axonal loss (Bielschowsky stain), and inflammation (Iba1 immunofluorescence) in three animal groups ( n = 5 per group) on the 1st, 3rd, and 10th day after MCAO. MPF and LFB optical density (OD) were significantly reduced in the ischemic lesion on all days after MCAO relative to the symmetrical regions of the contralateral hemisphere. Percentage changes in MPF and LFB OD in the ischemic lesion relative to the contralateral hemisphere significantly differed on the first day only. Percentage changes in LFB OD and MPF were strongly correlated (R = 0.81, P < 0.001) and did not correlate with other MRI parameters. MPF also did not correlate with other histological variables. Addition of T2 into multivariate regression further improved agreement between MPF and LFB OD (R = 0.89, P < 0.001) due to correction of the edema effect. This study provides histological validation of MPF as an imaging biomarker of demyelination in ischemic stroke.


Assuntos
Isquemia Encefálica/patologia , Doenças Desmielinizantes/patologia , Imageamento por Ressonância Magnética/métodos , Acidente Vascular Cerebral/patologia , Animais , Doenças Desmielinizantes/diagnóstico , Doenças Desmielinizantes/diagnóstico por imagem , Edema , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/patologia , Masculino , Mesotelina , Camundongos , Ratos Sprague-Dawley , Fatores de Tempo
7.
J Pharm Biomed Anal ; 150: 327-332, 2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29277066

RESUMO

Naturally occurring caspase-3-dependent cell death is a widespread event in the immature nervous system. Prolonged exposure to anesthetics promotes activation of caspase-3 in the developing hippocampus. In addition, anesthetics can upregulate the levels of metabolite lactate in the adult brain. The long-lasting increase in lactate levels may affect viability of brain cells. However, it remains unknown if anesthetic-induced activation of caspase-3 is accompanied by an increase in lactate levels in the immature brain. We investigated expression of apoptotic proteins by immunoblot and estimated an area between the baseline and the effect curve (ABEC) parameter for lactate levels by high-resolution magnetic resonance spectroscopy in the hippocampi of 2-day-old Wistar rats after treatment with anesthetic urethane. Both 1.5 and 2.5 g/kg of urethane resulted in a dose-dependent increase in the levels of active caspase-3 in the hippocampi in 4 h after injection. This anesthetic-induced increase in the levels of active caspase-3 was preceded by a prolonged dose-dependent rise in lactate levels. The dose-dependent increase in lactate levels was not associated with the urethane-induced changes in respiratory rate in the treated rat pups. Present results evidence that the prolonged dose-dependent elevation in lactate levels in the developing brain can be induced even by urethane, which was suggested to be suitable for various physiopharmacological studies previously. The observed sequence of events after treatment with urethane suggests the possible role of lactate as a neurodamaging agent in the immature brain in case of the sustaining rise in the levels of this metabolite during prolonged anesthesia.


Assuntos
Anestesia Geral , Anestésicos Intravenosos/administração & dosagem , Hipocampo/efeitos dos fármacos , Ácido Láctico/metabolismo , Uretana/administração & dosagem , Animais , Animais Recém-Nascidos , Caspase 3/metabolismo , Relação Dose-Resposta a Droga , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Espectroscopia de Ressonância Magnética , Ratos Wistar , Fatores de Tempo , Regulação para Cima
8.
Bioorg Med Chem Lett ; 27(16): 3925-3930, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28676274

RESUMO

We report on the synthesis and properties of a new multimodal theranostic conjugate based on an anticancer fluorinated nucleotide conjugated with a dual-labeled albumin. A fluorine-labeled homocysteine thiolactone has been used as functional handle to synthesize the fluorinated albumin and couple it with a chemotherapeutic agent 5-trifluoromethyl-2'-deoxyuridine 5'-monophosphate (pTFT). The conjugate allows for direct optical and 19F magnetic resonance cancer imaging and release of the drug upon addition of glutathione. Interestingly, the pTFT release from albumin conjugate could only be promoted by the increased acidity (pH 5.4). The in vitro study and primary in vivo investigations showed stronger antitumor activity than free pTFT.


Assuntos
Antineoplásicos/farmacologia , Nucleotídeos/química , Albumina Sérica/química , Nucleotídeos de Timina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Concentração de Íons de Hidrogênio , Estrutura Molecular , Oxirredução , Relação Estrutura-Atividade , Nucleotídeos de Timina/química
9.
Sci Rep ; 7: 46686, 2017 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-28436460

RESUMO

Cuprizone-induced demyelination in mice is a frequently used model in preclinical multiple sclerosis research. A recent quantitative clinically-targeted MRI method, fast macromolecular proton fraction (MPF) mapping demonstrated a promise as a myelin biomarker in human and animal studies with a particular advantage of sensitivity to both white matter (WM) and gray matter (GM) demyelination. This study aimed to histologically validate the capability of MPF mapping to quantify myelin loss in brain tissues using the cuprizone demyelination model. Whole-brain MPF maps were obtained in vivo on an 11.7T animal MRI scanner from 7 cuprizone-treated and 7 control С57BL/6 mice using the fast single-point synthetic-reference method. Brain sections were histologically stained with Luxol Fast Blue (LFB) for myelin quantification. Significant (p < 0.05) demyelination in cuprizone-treated animals was found according to both LFB staining and MPF in all anatomical structures (corpus callosum, anterior commissure, internal capsule, thalamus, caudoputamen, and cortex). MPF strongly correlated with quantitative histology in all animals (r = 0.95, p < 0.001) as well as in treatment and control groups taken separately (r = 0.96, p = 0.002 and r = 0.93, p = 0.007, respectively). Close agreement between histological myelin staining and MPF suggests that fast MPF mapping enables robust and accurate quantitative assessment of demyelination in both WM and GM.


Assuntos
Cuprizona/toxicidade , Doenças Desmielinizantes/diagnóstico por imagem , Modelos Animais de Doenças , Substâncias Macromoleculares/metabolismo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Mapeamento Encefálico/métodos , Doenças Desmielinizantes/induzido quimicamente , Substância Cinzenta/diagnóstico por imagem , Substância Cinzenta/patologia , Humanos , Indóis/química , Mesotelina , Camundongos Endogâmicos C57BL , Bainha de Mielina/patologia , Prótons , Substância Branca/diagnóstico por imagem , Substância Branca/patologia
10.
Neuroimage ; 147: 985-993, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-27646128

RESUMO

A well-known problem in ultra-high-field MRI is generation of high-resolution three-dimensional images for detailed characterization of white and gray matter anatomical structures. T1-weighted imaging traditionally used for this purpose suffers from the loss of contrast between white and gray matter with an increase of magnetic field strength. Macromolecular proton fraction (MPF) mapping is a new method potentially capable to mitigate this problem due to strong myelin-based contrast and independence of this parameter of field strength. MPF is a key parameter determining the magnetization transfer effect in tissues and defined within the two-pool model as a relative amount of macromolecular protons involved into magnetization exchange with water protons. The objectives of this study were to characterize the two-pool model parameters in brain tissues in ultra-high magnetic fields and introduce fast high-field 3D MPF mapping as both anatomical and quantitative neuroimaging modality for small animal applications. In vivo imaging data were obtained from four adult male rats using an 11.7T animal MRI scanner. Comprehensive comparison of brain tissue contrast was performed for standard R1 and T2 maps and reconstructed from Z-spectroscopic images two-pool model parameter maps including MPF, cross-relaxation rate constant, and T2 of pools. Additionally, high-resolution whole-brain 3D MPF maps were obtained with isotropic 170µm voxel size using the single-point synthetic-reference method. MPF maps showed 3-6-fold increase in contrast between white and gray matter compared to other parameters. MPF measurements by the single-point synthetic reference method were in excellent agreement with the Z-spectroscopic method. MPF values in rat brain structures at 11.7T were similar to those at lower field strengths, thus confirming field independence of MPF. 3D MPF mapping provides a useful tool for neuroimaging in ultra-high magnetic fields enabling both quantitative tissue characterization based on the myelin content and high-resolution neuroanatomical visualization with high contrast between white and gray matter.


Assuntos
Substância Cinzenta/diagnóstico por imagem , Imageamento Tridimensional/métodos , Fenômenos Magnéticos , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Substância Branca/diagnóstico por imagem , Animais , Masculino , Prótons , Ratos , Ratos Wistar
11.
Data Brief ; 10: 381-384, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28018953

RESUMO

The presented dataset provides a normative high-resolution three-dimensional (3D) macromolecular proton fraction (MPF) map of the healthy rat brain in vivo and source images used for its reconstruction. The images were acquired using the protocol described elsewhere (Naumova, et al. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage (2016) doi: 10.1016/j.neuroimage.2016.09.036). The map was reconstructed from three source images with different contrast weightings (proton density, T1, and magnetization transfer) using the single-point algorithm with a synthetic reference image. Source images were acquired from a living animal on an 11.7 T small animal MRI scanner with isotropic spatial resolution of 170 µm3 and total acquisition time about 1.5 h. The 3D dataset can be used for multiple purposes including interactive viewing of rat brain anatomy, measurements of reference MPF values in various brain structures, and development of image processing techniques for the rodent brain segmentation. It also can serve as a gold standard image for implementation and optimization of rodent brain MRI protocols.

12.
Behav Brain Res ; 297: 76-83, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26454239

RESUMO

The Zbtb33 gene encodes the Kaiso protein-a bimodal transcriptional repressor. Here, the effects of Zbtb33 gene disruption on the brain and behaviour of the Kaiso-deficient (KO) and C57BL/6 (WT) male mice were investigated. Behaviour was studied using the open field, novel object, elevated plus maze and acoustic startle reflex tests. Brain morphology was investigated with magnetic resonance imaging. Biogenic amine levels and gene expression in the brain were measured with high-performance liquid chromatography and quantitative real-time RT-PCR, respectively. Zbtb33 gene mRNA was not detected in the brain of KO mice. KO mice exhibited increased locomotion, exploration in the open field, novel object and elevated plus-maze test. At the same time, Zbtb33 gene disruption did not alter anxiety-related behaviour in the elevated plus-maze test. KO mice showed elevated amplitudes and pre-pulse inhibitions of the acoustic startle reflex. These behavioural alterations were accompanied by significant reductions in the volumes of the lateral ventricles without significant alterations in the volumes of the hippocampus, striatum, thalamus and corpus callosum. Norepinephrine concentration was reduced in the hypothalami and hippocampi in KO mice, while the levels of serotonin, dopamine, their metabolites as well as mRNA of the gene coding brain-derived neurotrophic factor were not altered in the brain of KO mice compared to WT mice. This study is the first to reveal the involvement of the Zbtb33 gene in the regulation of behaviour and the central nervous system.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Comportamento Exploratório/fisiologia , Atividade Motora/fisiologia , Inibição Pré-Pulso/fisiologia , Fatores de Transcrição/deficiência , Animais , Ansiedade/metabolismo , Ansiedade/patologia , Expressão Gênica , Inibição Psicológica , Ventrículos Laterais/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Norepinefrina/metabolismo , Tamanho do Órgão , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética
13.
Bioorg Med Chem ; 23(21): 6943-54, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26462051

RESUMO

Straightforward and reliable tools for in vivo imaging of tumors can benefit the studies of cancer development, as well as contribute to successful diagnosis and treatment of cancer. (19)F NMR offers an exceptional quantitative way of in vivo imaging of the infused agents because of the lack of (19)F signals from the endogenous molecules in the body. The purpose of this study is to develop molecular probes with appropriate NMR characteristics and the biocompatibility for in vivo applications using (19)F MRI. We have studied the reaction between perfluorotoluene and homocysteine thiolactone resulting in the formation of N-substituted homocysteine thiolactone derivative. It has been shown that the reaction occurs selectively at the para position. This fluorine-labeled homocysteine thiolactone has been employed for the introduction of a perfluorotoluene group as a (19)F-containing tag into human serum albumin. The modified protein has been studied in terms of its ability to aggregate and promote the formation of free radicals. By comparing the properties of N-perfluorotoluene-homocystamide of albumin with N-homocysteinylated albumin, it has been revealed that blocking of the alpha-amino group of the homocysteine residue in the fluorinated albumin conjugate inhibits the dangerous aggregation process, as well as free radical formation. A dual-labeled albumin-based molecular probe for (19)F MRI and fluorescence microscopy has been obtained by functionalizing the protein with both maleimide of a fluorescent dye and a fluorinated thiolactone derivative. The incubation of cells with this conjugate did not reveal any significant reduction in cell viability with respect to the parent albumin. The perfluorotoluene-labeled albumin has been demonstrated to act as a promising agent for in vivo (19)F MRI.


Assuntos
Meios de Contraste/metabolismo , Desenho de Fármacos , Homocisteína/análogos & derivados , Albumina Sérica/química , Animais , Encéfalo/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Meios de Contraste/química , Meios de Contraste/toxicidade , Feminino , Imagem por Ressonância Magnética de Flúor-19 , Radicais Livres/metabolismo , Homocisteína/química , Homocisteína/metabolismo , Humanos , Camundongos , Camundongos SCID , Microscopia de Fluorescência , Neoplasias/diagnóstico , Neoplasias/diagnóstico por imagem , Radiografia , Albumina Sérica/metabolismo , Transplante Heterólogo
14.
Behav Brain Res ; 294: 89-94, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26248295

RESUMO

Olfaction plays an important role in mammals while aging causes olfactory dysfunction. Here the features of olfactory function in aging male rats were studied. We compared brain activity of regions involved in the perception (olfactory bulbs) and processing (cerebral cortex, hippocampus, hypothalamus) of sexually or socially significant odor stimulus with 11.7 T MR-scanner and odor perception using behavioral tests in 5-month old males with normal (Wistar rats) or accelerated senescence (d-galactose-treated Wistar rats (150 mg/kg/day, i.p., 12 weeks) or OXYS rats with hereditary defined accelerated aging). d-galactose-treated Wistar males had altered BOLD-response in the centers processing socially significant odor information and changed patterns of the functional connectivity. We detected no significant changes in the olfactory function of OXYS males probably due to compensatory processes. In saline-treated Wistar rats, the correlation of BOLD-responses to both types of stimuli in the olfactory bulbs and cerebral cortex indicated changes in odor differentiation. Behavioral tests showed no significant differences between groups. However, the time of odor exploration increased in d-galactose-treated males indicating changes in odor recognition. Thus, we first revealed that in animal model of pharmacologically induced aging olfactory dysfunction occurred at the level of the centers processing socially significant odor information while the centers of odor perception (olfactory bulbs) remained unaffected. Alterations observed in Wistar rats chronically treated with saline evidenced the influence of long-term manipulations with experimental animals on olfactory function per se.


Assuntos
Envelhecimento/fisiologia , Encéfalo/fisiologia , Percepção Olfatória/fisiologia , Comportamento Sexual Animal/fisiologia , Percepção Social , Animais , Modelos Animais de Doenças , Comportamento Exploratório/fisiologia , Galactose , Imageamento por Ressonância Magnética , Masculino , Odorantes , Transtornos do Olfato/fisiopatologia , Condutos Olfatórios/fisiologia , Reconhecimento Fisiológico de Modelo/fisiologia , Estimulação Física , Ratos Wistar
15.
Alcohol Clin Exp Res ; 39(7): 1128-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26058418

RESUMO

BACKGROUND: The medications produced from natural products are widely used as prophylactics for sickness induced by alcohol consumption. One such prophylactic is produced from the Reishi mushroom, Ganoderma lucidum. Because of the antioxidant properties of these preparations, we expect neuroprotective prophylactic effects of Reishi-based medications in alcohol-treated animals. METHODS: The Reishi (R) suspension was produced as water extract from Altaian mushrooms. Sprague-Dawley male rats were separated into the following 3 experimental groups: Group A + R received R (6 days per week) starting 1 week before alcohol exposure, and during the next 3 weeks, they received both R and alcohol; group A received alcohol; and group C received water. At the end of experiment, we determined the metabolic profile using proton magnetic resonance spectroscopy ((1) H MRS) of the brain cortex and phosphorus magnetic resonance spectroscopy of the liver. Additionally, the blood cells were collected, and the serum biochemistry and liver histology were performed after euthanasia. RESULTS: Partial least squares discriminant analysis processing of the brain (1) H MRS gave 2 axes, the Y1 axis positively correlated with the level of taurine and negatively correlated with the level of lactate, and the Y2 axis positively correlated with the content of GABA and glycine and negatively correlated with the sum of the excitatory neurotransmitters, glutamate and glutamine. The Y1 values reflecting the brain energetics for the A + R group exceeded the corresponding values for groups C and A. The maximal level of Y2 reflecting the prevalence of inhibitory metabolites in the brain was observed in the rats exposed to alcohol. Moderate alcohol consumption did not cause significant pathological changes in the livers of the experimental animals. However, 20 days of alcohol consumption significantly increased the number of binuclear hepatocytes compared to the control. This effect was mitigated in the rats that received the Reishi extract. CONCLUSIONS: Regular administration of the Reishi suspension improved the energy supply to the brain cortex and decreased the prevalence of inhibitory neurotransmitters that are characteristic of alcohol consumption. The alcohol-induced increase in liver proliferation was significantly suppressed by regular administration of the G. lucidum water suspension.


Assuntos
Transtornos Relacionados ao Uso de Álcool/prevenção & controle , Produtos Biológicos/uso terapêutico , Reishi , Consumo de Bebidas Alcoólicas/sangue , Animais , Produtos Biológicos/farmacologia , Peso Corporal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Córtex Cerebral/efeitos dos fármacos , Ingestão de Líquidos/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Hepatócitos/efeitos dos fármacos , Masculino , Espectroscopia de Prótons por Ressonância Magnética , Ratos Sprague-Dawley
16.
Interdiscip Toxicol ; 8(3): 113-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27486369

RESUMO

In vivo study of cerebral metabolism in neonatal animals by high-resolution magnetic resonance spectroscopy (MRS) is an important tool for deciphering the developmental origins of adult diseases. Up to date, all in vivo spectrum acquisition procedures have been performed in neonatal rodents under anesthesia. However, it is still unknown if the inhaled anesthetic isoflurane, which is commonly used in magnetic resonance imaging studies, could affect metabolite levels in the brain of neonatal rats. Moreover, the unanesthetized MRS preparation that uses neonatal rodent pups is still lacking. Here, a novel restraint protocol was developed for neonatal rats in accordance with the European Directive 2010/63/EU. This protocol shares the same gradation of severity as the protocol for non-invasive magnetic resonance imaging of animals with appropriate sedation or anesthesia. Such immobilization of neonatal rats without anesthesia can be implemented for MRS studies when an interaction between anesthetic and target drugs is expected. Short-term isoflurane treatment did not affect the levels of key metabolites in the hippocampi of anesthetized pups and, in contrast to juvenile and adult rodents, it is suitable for MRS studies in neonatal rats when the interaction between anesthetic and target drugs is not expected.

17.
NMR Biomed ; 27(4): 399-405, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24493094

RESUMO

In vivo proton magnetic resonance spectroscopy ((1) H MRS) of outbred stock ICR male mice (originating from the Institute of Cancer Research) was used to study the brain (hippocampus) metabolic response to the pro-inflammatory stimulus and to the acute deficiency of the available energy, which was confirmed by measuring the maximum oxygen consumption. Inhibition of glycolysis by means of an injection with 2-deoxy-d-glucose (2DG) reduced the levels of gamma-aminobutyric acid (GABA, p < 0.05, in comparison with control, least significant difference (LSD) test), N-acetylaspartate (NAA, p < 0.05, LSD test) and choline compounds, and at the same time increased the levels of glutamate and glutamine. An opposite effect was found after injection with bacterial lipopolysaccharide (LPS) - a very common pro-inflammatory inducer. An increase in the amounts of GABA, NAA and choline compounds in the brain occurred in mice treated with LPS. Different metabolic responses to the energy deficiency and the pro-inflammatory stimuli can explain the contradictory results of the brain (1) H MRS studies under neurodegenerative pathology, which is accompanied by both mitochondrial dysfunction and inflammation. The prevalence of the excitatory metabolites such as glutamate and glutamine in 2DG treated mice is in good agreement with excitation observed during temporary reduction of the available energy under acute hypoxia or starvation. In turn, LPS, as an inducer of the sickness behavior, which was manifested as depression, sleepiness, loss of appetite etc., shifts the brain metabolic pattern toward the prevalence of the inhibitory neurotransmitter GABA.


Assuntos
Encéfalo/metabolismo , Desoxiglucose/administração & dosagem , Lipopolissacarídeos/administração & dosagem , Espectroscopia de Ressonância Magnética , Prótons , Animais , Encéfalo/efeitos dos fármacos , Desoxiglucose/farmacologia , Metabolismo Energético/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraperitoneais , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Consumo de Oxigênio/efeitos dos fármacos , Análise de Componente Principal
18.
Aging (Albany NY) ; 5(6): 474-84, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23817674

RESUMO

Cellular and organismal aging are driven in part by the MTOR (mechanistic target of rapamycin) pathway and rapamycin extends life span inC elegans, Drosophila and mice. Herein, we investigated effects of rapamycin on brain aging in OXYS rats. Previously we found, in OXYS rats, an early development of age-associated pathological phenotypes similar to several geriatric disorders in humans, including cerebral dysfunctions. Behavioral alterations as well as learning and memory deficits develop by 3 months. Here we show that rapamycin treatment (0.1 or 0.5 mg/kg as a food mixture daily from the age of 1.5 to 3.5 months) decreased anxiety and improved locomotor and exploratory behavior in OXYS rats. In untreated OXYS rats, MRI revealed an increase of the area of hippocampus, substantial hydrocephalus and 2-fold increased area of the lateral ventricles. Rapamycin treatment prevented these abnormalities, erasing the difference between OXYS and Wister rats (used as control). All untreated OXYS rats showed signs of neurodegeneration, manifested by loci of demyelination. Rapamycin decreased the percentage of animals with demyelination and the number of loci. Levels of Tau and phospho-Tau (T181) were increased in OXYS rats (compared with Wistar). Rapamycin significantly decreased Tau and inhibited its phosphorylation in the hippocampus of OXYS and Wistar rats. Importantly, rapamycin treatment caused a compensatory increase in levels of S6 and correspondingly levels of phospo-S6 in the frontal cortex, indicating that some downstream events were compensatory preserved, explaining the lack of toxicity. We conclude that rapamycin in low chronic doses can suppress brain aging.


Assuntos
Envelhecimento/fisiologia , Encéfalo/efeitos dos fármacos , Sirolimo/farmacologia , Animais , Ansiedade/tratamento farmacológico , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Imageamento por Ressonância Magnética , Atividade Motora/efeitos dos fármacos , Ratos , Ratos Wistar , Proteínas Quinases S6 Ribossômicas/genética , Proteínas Quinases S6 Ribossômicas/metabolismo , Sirolimo/administração & dosagem , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
19.
Bioconjug Chem ; 24(5): 780-95, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23521072

RESUMO

Herein, we report a novel strategy to engineer an acid-sensitive anticancer theranostic agent using a vector-drug ensemble. The ensemble was synthesized by directly conjugating the linoleic acid (LA)-modified branched polyethyleneimine with a chemotherapeutic drug trifluorothymidine. Linoleic acid residues were grafted onto 25 kDa polyethyleneimine (PEI) by treating PEI with linoleic acid chloroanhydride. 5-Trifluoromethyl-2'-deoxyuridine (trifluorothymidine, TFT) was introduced into LA-PEI conjugate by phosphorylating the conjugate with amidophosphate of trifluorothymidine 5'-monophosphate (pTFT), which had been activated by its conversion into the N,N-dimethylaminopyridine derivative. The extent of mononucleotide analog incorporation in the polymer was regulated by the ratio of pTFT to the polymer during the synthesis. Samples containing 20-70 TFT residues per PEI molecule were obtained. The cytotoxicity of PEI-LA-pTFT conjugates decreased with increasing nucleotide content, as examined using the MTT method. Due to the presence of fluorine atoms, TFT-based conjugates could be detected directly in the animals by (19)F magnetic resonance imaging. In addition, the presence of the amidophosphate group in PEI-LA-pTFT conjugates allowed their detection by in vivo(31)P NMR spectroscopy. Indeed, the (31)P NMR signal of a phosphoramide (δ ~ 12 ppm) was observed in the mouse muscle tissue treated with PEI-LA-pTFT conjugate along with the signals from endogenous phosphorus-containing compounds. At the same time, the use of PEI-LA-pTFT conjugate for chemotherapeutic drug delivery is limited due to the low release of pTFT from the carrier. To enhance the release of the drug from the conjugate in the endosomes, PEI-LA polymer was coupled with urocanic acid (UA), which bears imidazole ring and thus can form an acid-labile P-N bond with pTFT. The PEI-LA-UA-pTFT conjugate containing 30 residues of UA and 40 residues of pTFT was tested against the murine Krebs-II ascites carcinoma, grown as an ascetic tumor. The intraperitoneal injection of the conjugates resulted in prolongation of the animals' life and to the complete disappearance of the tumor after three injections.


Assuntos
Antineoplásicos/química , Antineoplásicos/uso terapêutico , Ácido Linoleico/química , Polietilenoimina/análogos & derivados , Trifluridina/química , Trifluridina/uso terapêutico , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Carcinoma Krebs 2/tratamento farmacológico , Linhagem Celular Tumoral , Portadores de Fármacos/química , Humanos , Ligantes , Camundongos , Camundongos Endogâmicos C57BL , Trifluridina/administração & dosagem , Trifluridina/farmacocinética
20.
Behav Brain Res ; 243: 53-60, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23295395

RESUMO

Catalepsy is a passive defensive strategy in response to threatening stimuli. In exaggerated forms it is associated with brain dysfunctions. The study was aimed to examine (1) possible association of the hereditary catalepsy with neuroanatomical characteristics and (2) sensitivity of the catalepsy expression, HPA and brain serotonin (5-HT) systems to restraint stress (for one hour) in mice of catalepsy-prone (CBA/Lac, ASC (Antidepressant Sensitive Catalepsy), congenic AKR.CBA-D13M76) and catalepsy-resistant (AKR/J) strains. Magnetic resonance imaging showed that the catalepsy-prone mice were characterized by the smaller size of the pituitary gland and the larger size of the thalamus. In ASC mice, diencephalon region (including hypothalamus) and striatum were significantly reduced in size. Restraint stress provoked catalepsy in AKR mice and enhanced it in the catalepsy-prone mice. Stress-induced corticosterone elevation was diminished, while 5-HT metabolism (5-HIAA level or 5-HIAA/5-HT ratio) in the midbrain was significantly augmented by stress in the catalepsy-prone mice. The multivariate factor analysis revealed interactions between the basal levels and the stress-induced alterations of 5-HT metabolism in the hippocampus and midbrain suggesting the interaction between multiple alterations in 5-HT neurotransmission in several brain structures in the regulation of hereditary catalepsy. The study indicated an association between the hereditary catalepsy, neuroanatomical characteristics, and neurochemical responses to emotional stress. The catalepsy-prone genotypes seem to be more susceptible to stress that suggests them as the adequate models to study the genetic predisposition to stress-based neuropathology. The data support the association of hereditary catalepsy with the inherited brain dysfunction of a neurodegenerative nature.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Catalepsia/genética , Catalepsia/fisiopatologia , Estresse Psicológico/metabolismo , Animais , Encéfalo/fisiopatologia , Predisposição Genética para Doença , Genótipo , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos AKR , Camundongos Endogâmicos CBA , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...